MCF	R3U
Mrs.	Uehling
Ch 1	Review Sheet

Name		

1. Does each graph represent a function? Explain.

Ch 1 Review Sheet

2. Is the relation a function? Explain. Domain {0,1,2,3} Range {9}

3. Determine the domain and range of the function. $y = -(x-3)^2 + 2$

4. Find f(3) for the function f(x) = 2(x-3)(x+1)

5. Determine the vertex of each quadratic function by completing the square. State whether the vertex is a minimum or maximum.

$$f(x) = -3x^2 - 18x + 2$$

MCR3U Mrs. Uehling Ch 1 Review Sheet $f(x) = \frac{1}{4}x^2 + 3x + 10$

- 6. The monthly profit, P(x), of a sportswear company, in thousands of dollars, is represented by the quadratic function $P(x) = -3x^2 + 18x 2$, where x is the amount spent on advertising, in thousands of dollars.
 - a. Determine the company's monthly profit.

b. Determine the amount spent on advertising to achieve the maximum profit.

Ch 1 Review Sheet 7. Solve $18x^2 - 3x - 1 = 0$ by factoring.

8. Solve $2x^2 - 6x + 1 = 0$ using the quadratic formula. Give exact answers (leave with square root in answer)

9. Use the discriminant to determine the number of roots for $1.8x^2 - 2x - 1 = 0$.

10. Write the equation for the quadratic function given the x-intercepts $5 \pm \sqrt{3}$ and contains the point (4,2). Express in standard form.

11. A small rocket is launched. It reaches a maximum height of 120m and lands 10m from the launching pad. Assume the rocket follows a parabolic path. Write the equation that describes its height, h meters, as a function of its horizontal distance, x meters, from the launching pad.

12. Write the equation of a quadratic function with only one x-intercept at -1, and that passes through the point (0,5).

Mrs. Uehling

Ch 1 Review Sheet

13. Determine the coordinates of the points of intersection of $y = -2x^2 + x - 2$ and y = 4x - 7.

14. Determine the number of points of intersection of $y = x^2 - x + 5$ and y = 5x - 4.

15. Determine the y-intercept of a line that has a slope of 7, and that is tangent (touches at one point) to $f(x) = 4x^2 - x + 1$.

Name Answers

1. Does each graph represent a function? Explain.

Mrs. Katz and Mrs. Uehling

Ch 1 Review Sheet

2. Is the relation a function? Explain. Domain {0,1,2,3} Range {9}

yes every domain value has only one range value

3. Determine the domain and range of the function. $y = -(x-3)^2 + 2$

vertex (3.2)

Domain: {XER}

Range: { y ER, y \ 2}

4. Find f(3) for the function f(x) = 2(x-3)(x+1)

$$f(3) = 2(3-3)(3+1)$$
= 2(0)(4)
= 0

5. Determine the vertex of each quadratic function by completing the square. State whether the vertex is a minimum or maximum.

$$f(x) = -3x^{2} - 18x + 2$$

$$= -3(x^{2} + 6x) + 2$$

$$= -3(x^{2} + 6x + (3)^{2} - (3)^{2}) + 2$$

$$= -3(x^{2} + 6x + (3)^{2}) - (-3)(3)^{2} + 2$$

$$= -3(x + 3)^{2} + 27 + 2$$

$$= -3(x + 3)^{2} + 29$$

$$(-3, 29) \quad \text{Haximom}$$

Mrs. Katz and Mrs. Uehling

Ch 1 Review Sheet

$$f(x) = \frac{1}{4}x^2 + 3x + 10$$

$$=\frac{1}{4}(x^2+12x)+10$$

$$= \frac{1}{4} \left(x^2 + 1 \lambda x + (6)^2 - (6)^2 \right) + 10$$

$$= \frac{1}{4} \left(\chi^2 + 12 \chi + 6^2 \right) - \left(\frac{1}{4} \right) (6)^2 + 10$$

$$= \frac{1}{4} (x + 6)^{2} - 9 + 10$$

$$= \frac{1}{4} (x + 6)^{2} + 1$$

- 6. The monthly profit, P(x), of a sportswear company, in thousands of dollars, is represented by the quadratic function $P(x) = -3x^2 + 18x - 2$, where x is the amount spent on advertising, in thousands of dollars.
 - a. Determine the company's monthly profit.

b. Determine the amount spent on advertising to achieve the maximum profit.

Amount spent is the X Value in \$1000's 56 Amount is \$ 3,000

Mrs. Katz and Mrs. Uehling

Ch 1 Review Sheet

7. Solve $18x^2 - 3x - 1 = 0$ by factoring.

$$18x^{2} - 3x - 1 = 0$$

$$(18x^{2} - 6x) + (3x - 1) = 0$$

$$6x(3x - 1) + 1(3x - 1) = 0$$

$$(6x + 1)(3x - 1) = 0$$

$$(6x + 1)(3x - 1) = 0$$

$$6x + 1 = 0$$

$$6x + 1 = 0$$

$$6x + 1 = 0$$

$$6x = -1$$

$$x = -1/6$$

$$x = 1/3$$

8. Solve $2x^2 - 6x + 1 = 0$ using the quadratic formula. Give exact answers (leave with square root in answer)

with square root in answer)
$$0 = 2 \quad b = -4 \quad C = 1$$

$$3a$$

$$x = -(-l_{e}) \pm \sqrt{(-l_{e})^{2} - 4(2)}$$

$$= (l_{e}) \pm \sqrt{3(l_{e})^{2} - 4(2)}$$

$$= (l_{e}) \pm \sqrt{3(l_{e})^{2}$$

9. Use the discriminant to determine the number of roots for $1.8x^2 - 2x - 1 = 0$.

Mrs. Katz and Mrs. Uehling

Ch 1 Review Sheet

10. Write the equation for the quadratic function given the x-intercepts $5 \pm \sqrt{3}$ and contains the point (4, 2) Express in standard form.

$$f(x) = a(x-r)(x-s)$$

= $a(x-5+\sqrt{3})(x-5-\sqrt{3})$

$$f(4) = 2$$

$$2 = \alpha(4-5+\sqrt{3})(4-5-\sqrt{3})$$

$$2 = \alpha(-1+\sqrt{3})(-1-\sqrt{3})$$

$$2 = \alpha(1+\sqrt{3}-\sqrt{3}-3)$$

$$2 = \alpha(-2)$$

a = -1

$$f(x) = -1(x-5+53)(x-5-53)$$

$$= -1(x^2-5-53x-5+53x+25-3)$$

$$= -1(x^2-10x+22)$$

$$= -x^2+10x-22$$

11. A small rocket is launched. It reaches a maximum height of 120m and lands 10m from the launching pad. Assume the rocket follows a parabolic path. Write the equation that describes its height, h meters, as a function of its horizontal distance, x meters, from the launching pad.

in vertex form
$$f(x) = -4.8(x-5)^2 + 120$$

$$f(s) = 120$$

 $120 = a(s)(5-10)$
 $120 = a(-25)$
 $a = -4.8$

12. Write the equation of a quadratic function with only one x-intercept at -1, and that passes through the point (0,5).

$$f(x) = 5(x+1)(x+1)$$

= $5(x+1)^2$

$$f(0) = 5$$

 $5 = \alpha(0+1)(0+1)$
 $5 = \alpha(1)(1)$
 $5 = \alpha$

Mrs. Katz and Mrs. Uehling

Ch 1 Review Sheet

13. Determine the coordinates of the points of intersection of $y = -2x^2 + x - 2$ and y = 4x - 7. 2x+5=0 -x+1=0

$$-2x^{2} + x - 3 = 4x - 7$$

$$-2x^{2} + x - 4x - 2 + 7 = 0$$

$$-2x^{2} - 3x + 5 = 0$$

$$-2x^{2} - 3x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2} - 5x + 2x + 5 = 0$$

$$-2x^{2}$$

$$2x = 5 \qquad x = 1$$

$$X = -5 \qquad y = 4(1)$$

$$y = -2(-5/2)^2 + (-5/2) - 2$$

$$= -17$$

$$(1, -3) \qquad (-5/2) - 17$$

$$x^{2}-x+5=5x-4$$

 $x^{2}-x-5x+5+4=0$
 $x^{2}-6x+9=0$
 $x^{2}-6x+9=0$
 $x^{2}-6x+9=0$

$$6^{2} - 4ac$$
 $(-4)^{2} - 4(1)(9)$
= $34 - 34$
= 0
.: 1 POI

15. Determine the y-intercept of a line that has a slope of 7, and that is tangent (touches at one point) to $f(x) = 4x^2 - x + 1$.

$$0 = b^{2} - 4ac$$

$$0 = (-8)^{2} - 4(4)(1-b)$$

$$0 = (4 - 16(1-b))$$

$$= (4 - 16 + 16b)$$

$$= 48 + 16b$$

$$-48 = 16b$$

$$-3 = b$$